MOMENTUM WORKSHEET
그리고 있는데 그는 그는데 사용하다 그는 사람들은 그는 그는 그들은 그들은 사람들이 가득하다 하면 하고 있다. 그는
1. Which has more momentum, a 1000 kg car moving 1 m/s or a 70 kg person sprinting at 8 m/s?
(Cor)
2. An official major league baseball has a mass of 0.14 kg. A pitcher throws a 40 m/s fastball which is hit by the batter straight back up the middle at a speed of 46 m/s.
a) What is the change in momentum of the ball during the collision with the bat?
b) If this collision occurs during a time of 0.012 seconds, what is the average force exerted by
the bet on the hell?
(a) $\Delta p = m(v_y - v_z) = .14(-4(-40))$ $= -12 = E(.012)$ $= -1000 \text{ N}$
3. A tennis ball may leave a top player's racket on the serve with a speed of 65.0 m/s. If the
ball's mass is 0.0600 kg and it is in contact with the racket for 0.0300 s, what is the average
force exerted on the ball? Would this force be enough to lift a person off the ground?
AP = (1/4 -vi) = Ft.03) [=: 130N]
4. How much force is required to stop a 60 kg person traveling at 30 m/s during a time of a)
5.0 seconds b) 0.50 seconds c) 0.05 seconds c) 0.05 seconds
5.0 seconds b) 0.50 seconds c) 0.05 seconds c) 0.05 seconds
(F: -3100 N
5. A 30 kg child running at 7 m/s jumps onto a 10 kg sled which was initially at rest. What
will be the velocity of the child+sled immediately after the child jumps on the sled?
30(7)+0 = (30+10) vs (Vs: 5.25%)
6. A 1500 kg car traveling at 15 m/s collides with a 500 kg moose which is at rest. If the
moose is knocked backward at 20 m/s, what happens to the car?
1500 (15) + 0 = 500 (30) + 1500 4 (4 : 8.3/3)
7. A 1500 kg car traveling 5.0 m/s collides head on with a 3000 kg truck traveling 7.0 m/s in
the opposite direction. If the bumpers lock (the collision is inelastic),
a) what is the velocity of the two vehicles together immediately following the collision?
b) what is the magnitude of the change in velocity experienced by the driver of each car
b) what is the magnitude of the change in velocity experienced by the driver of each car during the collision?
during the collision? $= \frac{1500(27) - (1500 + 3000)v_1}{(v_1 = -3^{-1/2}) + 3000}$
8. A 70 kg astronaut floating in an orbiting space station throws a 1.0 kg water bottle across
5. 17 / 6 kg astronaut norming in an obling space State of the state o

(9) In order to complete a tough "split" in bowling, a bowling ball of mass 6.5 kg is rolled with a velocity of 12 m/s. The ball hits a 1.3 kg bowling pin, sending it off with a speed of 3.5 m/s at an angle of 80 degrees with respect to the original direction of the bowling ball. What is the angle and direction of the bowling ball's velocity after the collision with the pin?

the room at a speed of 8.0 m/s. What is the magnitude of the astronaut's recoil velocity?

P: 0 P 0 = 1(8) + 70 V,

Challenge Onit for test

Impulse, Momentum & Conservation of Momentum & ven Worksheet

Momentum Worksheet.doc

Impulse and Momentum:

1. A compact car with a mass of 725 kg is moving at 90 km/hr toward the east.

P = (7254)(25%) = [18, 125 15% east]

b. A second car, with a mass of 2175 kg, has the same momentum. What is its velocity?

2. The same compact car from question 1, suddenly applies the brakes hard for 2.0 s. As a result an average force of 5.0 x 103 N is exerted on the car to slow it.

a. What is the magnitude and direction of the impulse on the car?

b. What is the magnitude and direction of the change in momentum of the car?

c. If the compact car was initially moving at 90 km/hr, what is its final velocity?

a. What is the snowmobile's change in momentum?

4. A boy hits a 0.05 kg golf ball from rest to a speed of 75 m/s. What is the impulse given to the ball? If the impact lasted for 0.01 seconds, what was the average force of impact?

If the impact lasted for 0.01 seconds, what was the average force of impact?

$$F : \Delta p = (v_4 - v_1) = (0.01)$$

5. A 0.144-kg baseball is pitched horizontally at 38.0 m/s. After the ball is hit by the bat, it moves in the opposite direction with a speed 42.0 m/s. If the bat and ball were in contact for 0.80 x 10-3 seconds, what was the average force the bat exerted on the ball?

$$F.t = m(v_4 - v_1)$$

 $F(.0008) = .144 (-42 - 38)$
 $F = [-14, 400 N]$

6. During an automobile crash test, a 1000 kg car is sent towards a cement wall at a speed of 14 m/s. It is brought to rest in 0.08 sec. What was the average force of the car on the wall?

7. A bowling ball with a mass of 5.4 kg is moving at a velocity of 3 m/s. What is the bowling ball's momentum?

8. A 10000 kg freight car is rolling along a track at 3 m/s. Calculate the time needed for a 1000 N force to stop it.

$$-1000 + = m(v_4 - v_7)$$

$$-1000 + = 10000(0-3) + 30s$$

9. A 0.160 kg hockey puck is moving to the right at 3.00 m/s. What is the velocity of the puck

- 10. A 0.005 kg bullet is fired with a velocity of 100 m/s toward a 10 kg stationary solid block resting on a frictionless surface.
- a. What is the change in momentum of the bullet if it is embedded in the block?

 b. What is the change in momentum of the bullet if it ricochets in the opposite direction with a speed of 99 m/s?

$$b p = p_f - p_i$$
= $m(v_f - v_i)$
= $.005(-99 - 100)$
= $F.995 + 5 = 7/5$

Impulse, Momentum & Conservation of Momentum Worksheet

Conservation of Momentum:

11. A 95-kg fullback running at 8.2 m/s collides in midair with a 128-kg defensive tackle moving in the opposite direction. After the collision, both players come to rest. How fast m, v; + m 2 v2; = (m,+ m2) vs was the tackle moving initially?

95(8.2). 125 V₂: = 0 V₂: = (-6.1%) 12. A thread holds two carts together as shown in the diagram below. After the thread is cut, a

compressed spring pushes the carts apart, giving the 1.5-kg car a speed of 27 cm/s to the left. What is the velocity of the 4.5-kg car?

Pi = Pf (-. 27%) + 4.5/5 /4 (V4 = . 09 -/s

13. Two campers dock a canoe. Once the canoe comes to rest, one camper with a mass of 80.0kg gets off the canoe with a velocity of +4.0 m/s. The canoe and the other camper drift off in the opposite direction with a speed of 2.78 m/s. What is the combined mass of the canoe and the second camper?

0 = 80ks (47/s) + m2 (-2.714/s)

14. A spaceship with a mass of 2.0 x 106 kg is cruising at a speed of 5.0 x 106 m/s when it blows up into two pieces. One section, with a mass of 7.5 x 10s kg is blown straight backwards m = 2 × 0 - 7.5 × 0 with a speed of 1.0 x 106 m/s. What is the magnitude and direction of the velocity of the second piece of the spaceship?

(2=10/3)(5 × 10 /3) = (7.5 × 10 6)(-1×10 /3) + 1250000 4, 15. A ceramic penguin with a mass of 0.5 kg suddenly bursts apart into two pieces. One piece has a mass of 0.15 kg and has a walksity of 2 m/s.

has a mass of 0.15 kg and has a velocity of -2m/s. What is the velocity of the second piece?

16. The nucleus of an atom has a mass of 3.8 x 10-25 kg and is at rest. The nucleus is radioactive and auddonly significant and significant a

and suddenly ejects a particle of mass 6.6 x 10-27 kg at a speed of 1.5 x 107 m/s. Find the recoil speed of the nucleus that is left behind.

$$P_{1} = 0 = p_{f}$$

$$0 = (... \times 10^{-27} k_{5} (1.5 \times 10^{7} k_{5}) + (3.8 \times 10^{-15} k_{5})$$

$$0 = 9.9 \times 10^{-26} + 3.73 \times 10^{25} v_{2}$$

$$v_{2} = -2.65416\%$$

17. A 0.2 kg plastic ball moves with a velocity of .3 m/s. It collides with a second plastic ball of mass 0.1 kg, moving along the same line at a velocity of .1 m/s. After the collision, the velocity of the 0.1 kg ball is 0.26 m/s. What is the new velocity of the first ball?

. $\mathcal{Z}(.3)$ + (.1)(.1) = .1(.20) + $.2(\sqrt{.})$.07 = .020 + $.2(\sqrt{.})$ 18. A 40 kg girl is running along at 5.2 m/s and jumps into a 20 kg wagon. How fast will the

18. A 40 kg girl is running along at 5.2 m/s and jumps into a 20 kg wagon. How fast will the wagon move with the girl in it?

208 = 60 v₄ [v₄ = 3.5%]

19. A 0.12 kg bullet with a velocity of 400 m/s is shot into a ballistic pendulum with a mass of 6.00 kg and a string length of 70 cm. How fast will the pendulum and the embedded bullet be moving just after the collision? What is the vertical height the pendulum will reach at the top of its swing?

.12kg(400%) + (k, (0%) = (.12+6) v2 48 = 6.12 v2

[V2: 7.8 7/3]

$$TE = kE + PE$$

$$TE = \frac{1}{2} m v^{2}$$

$$= \frac{1}{2} ((.12)(7.8)^{2}$$

$$= |SI| = PE$$

$$|SI| = myy$$

$$|SI| = (.12 (9.8) y)$$

$$y = 3.1 m$$

