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Celestial navigation is a technique for determining one’s geographic position by the observation of
identified stars, identified planets, the Sun, and the Moon. This subject has a multitude of
refinements which, although valuable to a professional navigator, tend to obscure the basic
principles. I describe these principles, give an analytical solution of the classical two-star-sight
problem without any dependence on prior knowledge of position, and include several examples.
Some approximations and simplifications are made in the interest of clarity. © 2004 American
Association of Physics Teachers.
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I. INTRODUCTION

Celestial navigation is a technique for determining one’s
geographic position by the observation of identified stars,
identified planets, the Sun, and the Moon. Its basic principles
are a combination of rudimentary astronomical knowledge
and spherical trigonometry.1–3
Anyone who has been on a ship that is remote from any

terrestrial landmarks needs no persuasion on the value of
celestial navigation. There are modern electronic naviga-
tional aids such as Loran, ocean bottom soundings, and the
global positioning system !GPS" which depends on receiving
precise timing data from a world-wide network of artificial
satellites, each carrying one or more atomic clocks. This pa-
per illustrates what can be learned with only a sextant, rudi-
mentary astronomical tables, and an accurate knowledge of
absolute time !from radio signals or a precise chronometer".
It is intended for students who are curious about the basic
principles of celestial navigation and makes no pretense of
serving a professional navigator or surveyor.

II. THE EARTH AND GEOGRAPHIC POSITION

The surfaces of the land masses of the Earth and of the
oceans are approximated as the surface of a spherically sym-
metric body of unit radius, hereafter called the terrestrial
sphere.4 The Earth as a whole is assumed to be rotating at a
constant angular velocity about an inertially oriented axis
through its geometric center O. A geographic position P is
referenced to a right-hand spherical coordinate system whose
center is at O and whose positive Z-axis is coincident with
the Earth’s rotational axis and in the same sense as the
Earth’s angular momentum vector. The plane through O that
is perpendicular to this axis is called the equatorial plane !the
X–Y plane". Any plane that contains the rotational axis in-
tersects the spherical surface in a great circle called a merid-
ian. By convention, the X axis lies in the meridian plane !the
prime meridian" that passes through a point in Greenwich,
England.1
The position P is specified by two coordinates, its latitude

% and longitude &. The latitude is the plane angle whose
apex is at O, with one radial line passing through P and the
other through the point at which the observer’s meridian in-
tersects the equator. Northern latitudes are taken to be posi-
tive !0° to 90°" and southern latitudes negative !0° to !90°".
The longitude is the dihedral angle,3,5–7 measured eastward
from the prime meridian to the meridian through P. The

longitude & is between 0° and 360°, although often it is
convenient to take the longitude westward of the prime me-
ridian to be between 0° and !180°. The longitude of P also
can be specified by the plane angle in the equatorial plane
whose vertex is at O with one radial line through the point at
which the meridian through P intersects the equatorial plane
and the other radial line through the point G at which the
prime meridian intersects the equatorial plane !see Fig. 1".

III. THE CELESTIAL SPHERE

The celestial sphere is an imaginary spherical surface
whose radius is very much greater than that of the Earth,
with its center at O and its polar axis coincident with the
Earth’s rotational axis. The position of each celestial object is
represented by the point on the celestial sphere at which a
line to it from O intersects this sphere. Inasmuch as the dis-
tances to all stars, planets, and the Sun are much greater than
the radius of the Earth, a terrestrial observer may be thought
of as viewing the sky from O. For the nearby Moon, how-
ever, its apparent position on the celestial sphere is, because
of parallax, different by as much as nearly one degree for
observers at different latitudes and longitudes.8 It is impos-
sible to make an a priori correction for this effect if the
observer’s position is initially unknown.
On the celestial sphere, the declination ' of a celestial

object is strictly analogous to the latitude % of a terrestrial
observer as defined in the above. The second spherical coor-
dinate of a celestial object, called right ascension (, is the
dihedral angle analogous to eastward terrestrial longitude,
but with the fundamental difference that it is measured from
a different reference point. That reference point on the celes-
tial equator is called the vernal equinox, usually denoted by
), and defined as follows. The equatorial plane of the Earth
is tilted to the plane of its orbit !the ecliptic plane" about the
Sun by 23.44°. These two planes intersect along a line that
pierces the celestial sphere at two points, called nodes. The
vernal equinox is the ascending node of the ecliptic on the
equator, that is, the position of the Sun on or about 21 March
of each year as the Sun ascends from southerly to northerly
declination. The right ascension ( of a celestial object, al-
ways taken to be positive eastward, is measured from the
vernal equinox. Astronomers usually measure right ascension
in hours, minutes, and seconds of time, but it can be con-
verted to the equivalent angular measure by taking one hour
"15°. Another commonly used quantity is called the hour
angle. It is the dihedral angle between any specified meridian
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plane and the meridian plane through a celestial object, al-
ways taken to be positive westward and lying in the range
0–24 h or 0°–360°. The sidereal hour angle !SHA" of a
celestial object, taken to be positive westward from the ver-
nal equinox, is related to the right ascension !Fig. 2" by

SHA"360°!( . !1"
We will take (, ', and the SHA to be fixed quantities for any
object !for example, stars or galaxies" beyond the solar sys-
tem; however, they vary with time for the planets, the Sun,
and the Moon. Their values are tabulated in almanacs,9–11 of
which The Air Almanac9 is the most convenient for a navi-
gator.

IV. OBSERVATIONAL CONSIDERATIONS

Imagine that a terrestrial observer is located at a fixed
point P of unknown latitude % and longitude &. The celestial
sphere rotates westward from the observer’s point of view at
an angular rate such that the vernal equinox transits !passes
through" the observer’s meridian from east to west at inter-
vals of 23 hour, 56 minute, 4 second of mean solar time, also
called the sidereal rotational period of the Earth or the side-
real day.
The observer’s zenith is defined by the outward extension

of the line from the center of the Earth through the observer
as in Fig. 3. The instantaneous angle between the observer’s
zenith and the line to a star is called the star’s zenith distance
and is denoted by *. As the celestial sphere rotates westward
about the Earth !that is, clockwise as viewed from above the
north celestial pole", * decreases from 90° as the star rises
from below the observer’s eastern horizon, has a minimum
value *min as S crosses the observer’s meridian, then in-
creases to 90° as the star sets below the observer’s western
horizon. These comments are applicable to all celestial ob-
jects for which '#!90°!%". Stars whose declinations meet
this condition transit the observer’s meridian at intervals of
exactly one sidereal day; but the intervals between the suc-
cessive transits of planets, the Sun and the Moon vary, al-
though predictably.
Stars for which '+!90°!%" constitute the observer’s cir-

cumpolar star field which, as viewed from O or any point on
the Earth, rotates counterclockwise for a northern hemi-
sphere observer or clockwise for a southern hemisphere ob-
server as time progresses. Such stars neither rise nor set,
being always above the observer’s horizon as they move
along small circles centered on the celestial pole. Their ze-
nith distances have a maximum value of 180°!!%$'" at
lower culmination and a minimum value !%!'" or !'!%" at
upper culmination as they transit the observer’s meridian
twice per sidereal day.
Usually, a practitioner of celestial navigation employs a

marine sextant or an aircraft bubble sextant to determine the
instantaneous altitude of a celestial object, the vertical angle
of the object above the local horizontal plane. After appro-
priate corrections,1,2 this quantity is denoted by h. However,
because of its simpler geometrical significance, I prefer the
zenith distance * to represent the observed quantity, with

Fig. 1. Definition of latitude % and longitude &. !a" Meridian cross-section
of the Earth through the observer at P. The center of the Earth is at O and
NP and SP are the north pole and south pole, respectively. !b" Equatorial
cross-section of the Earth. G represents the point at which the prime merid-
ian through Greenwich intersects the equator and P represents the point at
which the meridian through P intersects the equator. E means eastward and
W means westward. The longitude & is the dihedral angle !Ref. 7" between
the two named meridian planes, but is more easily visualized in this equa-
torial diagram.

Fig. 2. Right ascension !(" and sidereal hour angle !SHA" are both dihedral
angles !Ref. 7" measured from the meridian plane through the vernal equi-
nox ), with ( positive eastward and SHA positive westward. In this equa-
torial diagram, S represents the intersection of the meridian plane through a
star or any other celestial object with the equator.

Fig. 3. Definition of the zenith distance * of a star or other celestial object.
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*"90°!h . !2"
The quantity * is treated as intrinsically positive and is in the
range 0° to 90°.

V. DETERMINATION OF LATITUDE BY MERIDIAN
TRANSIT OF A STAR

As illustrated in Fig. 4,
%"'$*min , !3"

where % is the observer’s latitude, ' is the declination of the
star, and *min is the observed minimum value of the zenith
distance of the star !a southerly angle in this example" as it
transits the observer’s meridian.
If the star transits the observer’s meridian northward of P,

the corresponding relation is
%"'!*min . !4"

For a celestial object having '"%, the value of *min is zero at
the moment that the object transits the observer’s meridian,
that is, at the observer’s zenith. Thus, in this special case, the
observer’s latitude is equal to the declination of the star.
The same considerations are applicable to determining

latitude by observing the meridian transit of planets or the
center point of the disk of the Sun. But stars are conceptually
simpler because their values of ( and ' are almost constant,
whereas these coordinates for all celestial objects of the solar
system have changing values of ( and ' which must be taken
from a daily ephemeris.9
In any case, an observer also obtains the ‘‘true north’’ or

‘‘true south’’ direction, namely the direction of any celestial
object at the moment of its upper or lower culmination.

VI. DETERMINATION OF LATITUDE BY
OBSERVING POLARIS

An especially valuable star for northern hemisphere navi-
gators is the bright star Polaris !the North Star or ( Ursa
Minoris" which presently has declination '"$89.27°. Thus,
the observer’s latitude % is approximately equal to the alti-
tude of Polaris or

%,90°!* , !5"

where * is the zenith distance of Polaris, and, at this level of
approximation, is constant and independent of the time of
day. Hence, Polaris has had a special simplicity for determin-
ing latitude throughout maritime history. For example, a ves-
sel can sail from Europe to America without an accurate
knowledge of the time by simply maintaining a westerly
course during which * of Polaris is approximately constant or
changes day-by-day in such a way as to assure landfall in
America at approximately an intended latitude. Because the
diurnal motion of Polaris lies along a small circle around the
north celestial pole of angular radius 0.73°, an improvement
in accuracy in determining the latitude is to observe Polaris
at specific moments identified from its ephemeris.10,11 At
lower culminations %"90.73°!*, at upper culminations
%"89.27°!*, and at maximum eastern or western elonga-
tions, %"90°!*. Also the observation of Polaris provides a
convenient method for determining true north. Unfortunately,
there is no comparably bright star in the near vicinity of the
south celestial pole.2
Note that on the terrestrial sphere, one arcminute !1!" of

latitude % corresponds to a north–south distance of one nau-
tical mile or 6080 ft !easily remembered as ‘‘a mile a
minute’’", whereas one arcminute of longitude & corresponds
to cos% nautical mile.

VII. DETERMINATION OF LONGITUDE AND
LATITUDE BY OBSERVATION OF TWO OR MORE
STARS

Suppose that the zenith distance *1 of a star has been
observed at a particular time. It is evident from Fig. 5 that
the same value of * would have been observed simulta-
neously at an infinite number of other points on a small
circle, called the ‘‘circle of position,’’ on the terrestrial
sphere. This circle is the intersection with the sphere of a
circular cone having its vertex at the center of the Earth, half
angle *, and its axis through the substellar point S, the point
on the terrestrial sphere at which the line from O to the star
pierces that sphere.
Next, suppose that the zenith distance *2 of a second star

is observed simultaneously. This observation defines a sec-
ond small circle on the terrestrial sphere. The plane contain-
ing the circle of position for star 1 and the one containing the
circle of position for star 2 intersect in a line through P and
P! !see Fig. 6". The observer’s latitude is that of either point

Fig. 4. P represents the position of the observer and S the position of the
substellar point of a star at the moment that it transits the observer’s merid-
ian. O is the center of the Earth, ' the declination of the star, % the latitude
of the observer, and * the zenith distance of the star. NP is the north pole and
SP is the south pole.

Fig. 5. Cross-section of the terrestrial sphere in any plane containing the line
from the center of the Earth O through a substellar point S. The circle of
position is the intersection with the sphere of the circular cone whose axis is
OS and whose half-angle is *, the zenith distance of the star. The dashed line
represents an edge-on view of the plane containing the circle of position.
The normal to this plane through O has length OR"p .
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P or point P!. Auxiliary information can make possible the
choice between usually widely separated points P and P!. If
not, simultaneous observation of the zenith distance *3 of a
third star resolves the twofold ambiguity and provides a
unique choice between P and P!.
The resulting position is referenced to the substellar points

of the stars at the moment of observation. But these points
move progressively westward as the celestial sphere rotates
and the derived position of the observer also moves progres-
sively westward at the known, constant latitude, that is,
along a small circle on the terrestrial sphere in a plane par-
allel to the equator.
To determine the longitude & of the observer, a knowledge

of the simultaneous longitudes of the respective substellar
points is essential. In other words, it is essential to know the
absolute time !for example, GMT, the mean solar time at
Greenwich". The historical challenge of developing an accu-
rate chronometer for maritime use rests on this simple fact.12
Truly simultaneous observations of stars may not be fea-

sible in practice. But we make this assumption so as to
present the basic geometric principle. Suppose that the ob-
server has made simultaneous observations of the zenith dis-
tances of two !or more" stars at a particular moment, as de-
scribed above, and that the GMT of the moment of
observation also has been recorded.
It is usual to specify the hour angle of the ‘‘mean Sun’’

relative to the prime meridian as GMT or Universal Time
!UT". The mean Sun is a fictitious point on the celestial
equator that moves eastward on the celestial sphere at a con-
stant rate so as to match the yearly average, or mean, rate of
the actual Sun.
The definition of a Greenwich hour angle !GHA" is the

dihedral angle measured westward from the prime meridian
to any other specified meridian. The Greenwich Sidereal
Time !GSiT" is the instantaneous Greenwich hour angle of
the vernal equinox, GHA), which increases at the rate of
360° in 23 hour 56 minute 4 second !the sidereal rotational
period of the Earth" or 15.04108° per mean solar hour. The
values of the GHA and ' for the real Sun, the Moon, and
selected planets are tabulated at 10 min intervals for each day
of the year together with interpolation tables in Ref. 9.
The Greenwich Hour Angle of a celestial object, GHA*, is

given by
GHA*"GHA)$SHA*. !6"

The corresponding substellar point on the terrestrial sphere is
located at latitude ' and east longitude -, where

-"360°!GHA*. !7"
The observed value of * plus the GHA* for each observed
star complete the basic data set required for determination of
the latitude and longitude of the observer. !The word ‘‘star’’
is used for convenience in this and other sections, but the
analysis is equally applicable to any celestial body, !except
the Moon, as noted above" given its instantaneous values of
' and GHA".
The following solution of the two-star-sight problem is

adapted from Ref. 13. Figure 6 depicts two intersecting
circles of position on the terrestrial sphere. A unique position
of the observer occurs in the special case of either internal or
external tangency of the two circles. But, in general the
circles intersect at two points P and P!. Each circle is the
intersection of a circular cone of half angle * with the terres-
trial sphere of radius unity, or otherwise stated, the intersec-
tion of the sphere with a plane perpendicular to the line OS
from the center of the sphere O through the substellar point S
and at a normal distance p from O !see Fig. 5". In Fig. 5 it is
noted that a line from any point on the terrestrial sphere to
the identified star on the celestial sphere is parallel to OS
!that is, zero parallax".
The equation of the plane containing a circle of position

is6

x cos l$y cosm$z cos n!p"0, !8"
where l, m, and n are the angles to the geographic X, Y, and
Z axes. respectively. of the normal to the plane through O; p
is the length of the normal OR! !see Fig. 5". Also

p"cos * , !9"
and

n"90!' . !10"
Let

a.cos l"cos - cos ' , !11a"

b.cosm"sin - cos ' , !11b"

c.cos n"sin ' , !11c"

p"cos * . !11d"
In terms of the known quantities *, ', and -, the equation of
each plane is

aix$biy$ciz!pi"0, !12"

with i"1 for one of the planes and i"2 for the other. The
two planes intersect along a line PP!, given by the simulta-
neous solution of Eq. !12" for i"1, 2. The result is

x"
!Bz$C

A "
!Ey$F

D , !13"

where
A.!a1b2!a2b1", !14a"

B.!b2c1!b1c2", !14b"

C.!b2p1!b1p2", !14c"

D.!a1c2!a2c1", !14d"

E.!b1c2!b2c1", !14e"

F.!c2p1!c1p2". !14f"

Fig. 6. In this sketch of the terrestrial sphere, S1 and S2 are the simulta-
neous geographic positions of the respective substellar points of star 1 and
star 2. The two circles of position correspond to the observed zenith dis-
tances of the two stars and intersect at points P and P!, the two possible
geographic positions of the observer.
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In Eq. !13", x may be regarded as the parameter that desig-
nates a general point on the line P̄P! and y and z are the
other two coordinates of the point. For any x, we have

y"
F!Dx
E , !15a"

z"
C!Ax
B . !15b"

The two possible positions of the observer P and P! are
the intersections of the above line with the unit sphere; that
is, they are the two points for which

x2$y2$z2"1. !16"

The substitution of Eq. !15" into Eq. !16" yields a quadratic
equation for x with two real roots xp and xp! . The corre-
sponding values of yp and zp and yp! and zp! are calculated
by Eq. !15" to define the two possible positions P (xp ,yp ,zp)
and P! (xp! ,yp! ,zp!).
Finally, the latitude % and longitude &, of P and P! are

calculated from the Cartesian coordinates x, y, and z by the
relations

tan%"
z

!x2$y2
, !17a"

tan&"
y
x , !17b"

with attention to resolving quadrant ambiguity, to yield the
desired results: P (%p ,&p) and P! (%p! ,&p!).
Recall that the input data for the above analytical solution

are as follows. !a" From the observer: *1 and *2 , the simul-
taneously observed zenith distances of the two stars and the
observer’s Greenwich Mean Time of the stellar observations.
!b" Derived from Ref. 9: the values of the longitude -1 and
latitude '1 for the substellar point of star 1 and the longitude
-2 and the latitude '2 for the substellar point of star 2, both
at the GMT of the observations.
The above analytical solution is too tedious to be per-

formed by hand by a practicing navigator, but it can be easily
programmed for a computer of modest capability. The time-
independent values of the latitudes '1 and '2 of the two
substellar points are taken from standard tables9,10 and the
time-dependent values of their longitudes -1 and -2 are
given by

-"360°!GHA* !18a"

or

-"360°!!SHA*$GHA)". !18b"

In Eq. !18b" SHA* and GHA) are found !with interpolation
if necessary" from Ref. 9 for the observer’s recorded GMT
!Fig. 7".
The observer then enters the values of *1 , '1 , and -1 and

*2 , '2 , and -2 , into the computer, which yields &p , %p ,
&p! , and %p! . If it is not obvious whether P or P! is the
desired solution, the process is repeated for another pair of
stars, say, 1 and 3. Note that the method is the same for any
practical combination of stars, planets, and the Sun.
The traditional practice1,2 of celestial navigation uses ob-

servations to refine the observer’s position relative to an as-

sumed position, based on dead reckoning or other approxi-
mate information. The distinctive feature of the present
solution is that it obviates the need for such prior knowledge.

VIII. NOTES ON PRACTICALITY

The use of a marine sextant requires simultaneous visibil-
ity of the celestial object and the local horizon, that is, at
least partially clear skies and twilight conditions for stars and
planets or daylight conditions for the Sun. Under favorable
conditions at sea a skilled observer can determine * to an
accuracy of about one arcminute or better. A bubble aircraft
sextant provides an artificial horizon and greatly expands the
opportunities for observation, although usually with lesser
accuracy than that provided by a marine sextant. Observa-
tion, when practical, of a given celestial object at intervals
of, say, a few hours is equivalent to the two-star-sight tech-
nique, although movement of the observer between observa-
tions must be taken into account.
It should be mentioned that the simultaneous observation

of the zenith distance and azimuth of a single celestial object
at a given GMT, as is possible with a pier-mounted theodo-
lite at a fixed point, yields both & and %. The solution of the
corresponding geometric problem is straightforward, but is
not within the scope of this paper. Note that an error in GMT
of four seconds of time is equivalent to an error of one arc-
minute of longitude.

IX. SOME EXAMPLES

A. ! by meridian transit

!1" In a sequence of twilight observations, an observer
finds that the minimum value of the northerly zenith distance
!that is, at meridian transit" of the bright star Vega, *min
"25.51°. From tables, the declination of Vega '"$38.38°.
Hence, the observer’s latitude is given by Eq. !4", namely,

%"38.38°!25.51°"$12.87°. !19"
!2" In a sequence of twilight observations, an observer

finds the minimum zenith distance of Polaris !at upper cul-
mination" to be *min"42.15°. The declination of Polaris is
'"89.27°. Hence,

Fig. 7. GHA), SHA*, GHA*, ( and - are all dihedral angles !Ref. 7" as
defined in Secs. II and III. Their relationships are most simply represented
by this diagram of the equatorial plane in which ) is the vernal equinox, G
is the intersection of the Greenwich meridian with the equator, and S is the
intersection of the meridian through the star with the equator.
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%"89.27°!42.15°"$47.12°. !20"
!3" The minimum zenith distance of the center of the

Sun’s disk !that is, at local noon" is observed on 21 June to
be 38.35° to the north of the zenith. On that date the Sun’s
declination is $23.44°. Hence, %"23.44°!38.35°
"!14.91° !that is, south latitude".

B. Latitude from simultaneous observation of the zenith
distances "1 and "2 of two stars

The essential data for determining an observer’s latitude %
are the observed values *1 and *2 and the time-independent
values of ' and SHA for the two stars !see Sec. VII".

C. Determination of both latitude ! and longitude #

During evening twilight on 19 February 2004, the naviga-
tor on an imaginary ship in the central Atlantic Ocean ob-
served simultaneously the zenith distances of four bright
stars—Sirius, Procyon, Aldebaran, and Pollux—all at exactly
20:00 GMT. A copy of the Air Almanac9 for 2004 is avail-
able. The job of the navigator is to report the ship’s latitude
and longitude to the captain of the ship.
In lieu of an actual set of zenith distances, I have adopted

a position of the ship !unknown to the navigator" and have
calculated the four relevant zenith distances. These values
are then treated as ‘‘observed’’ values. The navigator then
fills out Table I. The right-hand column of Table I lists the
respective values of zenith distance *, calculated by the au-
thor, but regarded as ‘‘observed’’ values. The values of
GHA), SHA*, and ' are taken directly from Ref. 9. The
values of GHA* are found by Eq. !6" and the values of - by
Eq. !7". See also Fig. 7. Recall that ' and - are, respectively,
the constant latitude and the time-dependent longitude of the
substellar point of each star at the moment of observation.
The navigator then uses the suggested computer program

to calculate the latitude % and longitude & of the two pos-
sible positions of the ship for each of the six pairs of stars.
For each pair there are six numbers to enter into the com-
puter, namely *1 , '1 , and -1 for star 1 and *2 , '2 , and -2
for star 2, etc. The output of the computer program is given
in Table II.
In every two-star case, there is the twofold ambiguity we

discussed in Sec. VII. But it is clear that only a gross knowl-
edge of the ship’s position !for example, in the North Atlan-
tic Ocean or on a mountain in Tibet" would make it possible
to select the appropriate one of the two mathematically pos-
sible solutions. The uniqueness of such a choice becomes
overwhelmingly clear as the other five cases are examined.

X. CONCLUDING REMARKS

The analytical solution of the two-star sight problem re-
quires only !corrected" observed values of the zenith dis-
tances at recorded GMT and basic astronomical data from
the annual Air Almanac.9 And, in practice, it requires a com-
puter of modest capability. A single program covers all cases.
However, it does not require an assumed position, massive
sight reduction tables, or massive tables of computed altitude
and azimuth.
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APPENDIX: SUGGESTED EXERCISES FOR THE
STUDENT

!1" Verify the astronomical data in the first four columns of
Table I. Then use the author’s adopted position
%"$42.00°, &"!39.00° to calculate the four zenith
distances in the fifth column.

!2" Write a computer program for solving the two-star-sight
problem. Then use the data in Table I and verify the
author’s calculated values of % and & in Table II.

!3" Show, for a given date of the year, that the time interval
between sunrise and sunset yields a crude measure of an
observer’s latitude %. Estimate the accuracy by your
own observations.

a"Electronic mail: james-vanallen@uiowa.edu
1American Practical Navigator, H.O. Publ. No. 9, U.S. Navy Hydrographic
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4This approximation ignores the oblateness of the actual Earth as well as
the heights of mountains, etc., and thereby eliminates the distinctions
among astronomical latitude, geocentric latitude, and geodetic latitude.

Table I. Calculated values of zenith distances for an adopted position and
GMT. Greenwich Date: 19 February 2004. Greenwich Mean Time: 20:00.
GHA)"89.11°. #All numerical data are in degrees !°".$

SHA ' GHA* - *

Sirius 258.67 !16.72 347.78 12.22 70.45
Procyon 245.12 $5.22 334.23 25.77 61.50
Aldebaran 290.95 $16.52 20.06 339.94 26.87
Pollux 243.60 $28.02 332.71 27.29 48.02

Table II. The geographic coordinates of the observer as derived from the
data of Table I. #All numerical data are in degrees !°".$

First solution Second solution

Sirius—Procyon & !30.00 $85.16
% $42.00 !11.99

Sirius—Aldebaran & !30.00 !47.99
% $42.00 $21.84

Sirius—Pollux & !30.00 $76.65
% $42.00 $13.53

Procyon—Aldebaran & !34.79 !30.00
% !6.06 $42.00

Procyon—Pollux & !30.00 $83.96
% $42.00 $36.23

Aldebaran—Pollux & !6.82 !30.00
% !6.94 $42.00
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5D. T. Sigley and W. T. Stratton, Solid Geometry !Dryden, New York,
1956", revised edition.
6H. G. Ayre and R. Stephens, A First Course in Analytic Geometry !Van
Nostrand, Princeton, NJ, 1956".
7A dihedral angle is the ‘‘hinge’’ angle between two intersecting planes. It
is measured by the plane angle between two lines that pass through a
common point on the line of intersection of the planes, one line lying in
each plane and perpendicular to the line of intersection of the two planes.
8A primitive technique for determining longitude without the use of an
accurate time piece exploits this parallactic effect !‘‘linear distance’’ tech-
nique".

9The Air Almanac 2004, The National Almanac Office, United States Naval
Observatory !USGPO, Philadelphia, PA, 2003".

10The Astronomical Almanac for the Year 2004, The Nautical Almanac
Office, United States Naval Observatory !USGPO, Washington, DC,
2002".

11Observer’s Handbook 2004 !The Royal Astonomical Society of Canada,
Toronto, 2003".

12D. Sobel, Longitude !Walker, New York, 1995".
13J. A. Van Allen, ‘‘An analytical solution of the two star sight problem of
celestial navigation,’’ Navig.: J. Inst. Navig. 28!1", 40–43 !1981".

Horizontal Electromagnet. This horizontal helix on a stand was probably made by Daniel Davis or one of his successors at some time after ca. 1850. The
hollow coil produces a magnetic field that is enhanced when an iron bar is placed inside. The 1842 edition of Daniel Davis’s Manual of Magnetism notes that
‘‘the magnetizing power will be greatly increased if the wire be coiled in the manner of a cork-screw, so as to form a hollow cylinder into which the body to
be magnetized can be inserted. Such a coil is denominated a Helix.’’ The helix is in the Greenslade Collection. !Photograph and notes by Thomas B.
Greenslade, Jr., Kenyon College"
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